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The contribution of inhomogeneity of a standard alloy sample to the total variance of values 
measured analytically is evaluated and the dependence of the variance of inhomogeneity on the 
size of the sampling used for analysis is determined. 

As a consequence of the development of analytical methods which impose increasingly more 
severe requirements as to the correctness and exactness of data about composition of standards, 
the claims concerning their homogeneity become also more grave. Standard samples are neces
sary for the determination of the error relevant to an analytical method. However, when its 
accuracy attains the limit given by the possibilities of the manufacturer of standards so that the 
inaccurracy due to errors of measurement is comparable with that due to insufficient homoge
neity of the standard, a relation between the mentioned inaccuracies is needed together with a cor
responding terminology. 

The errors in chemical measuremen~s have been systematically dealt with in the literature!, 
while attempts to evaluate statistically the material homogeneity are rare 2 •3 and some of them 
are only of an introductory character4 . Definitions of basic ideas pertinent to the homogeneity 
of materials were already proposed s . 

We therefore attempted to evaluate quantitatively the variance of measured values, i.e. to 
distinguish the part of the variance due to the inaccuracy of measurement from that due to mate
rial inhomogeneity. Furthermore, we derived and verified experimentally the dependence of the 
variance of inhomogeneity on the size of the sampling. 

If the concentration of an element in a set of n samplings of the analyzed material is determined, 
the average value and standard deviation (j or variance (j2 can be determined. The latter is given as 

(1) 

where Xi denotes deviation of i-th measured value from the average and is equal to the sum 
of the error of measurement, xmi' and a quantity, xhi' called for convenience "deviation in com
position". The latter involves the deviation of the true content of the element to be determined 
from the average composition as well as the deviation of all decisive material factors from the 
average. On introducing Xmi or -"hi into Eq. (1) we obtain the quantity (j~ characterizing the ac
curacy of the method of measurement and (j~ characterizing the inhomogeneity of the material 
or, more precisely, the sum of composition and interference inhomogeneitiess . We shall denote 
(j~ as' ~ariance of the measuring method, (j~ variance of inhomogeneity and (j2 variance of mea
sured values or total variance. 
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In the present paper we derive the relation among the quantities a 2
, a~ and a~t and 

propose a method of their separation; further we determine both theoretically and 
experimentally the dependence of a~ on the size of the sampling, i.e. amount ofma
terial used for a single determinations. 

THEORETICAL 

We assume a distribution, f(xh)' of relative frequencies of deviations Xh in the men
tioned set, which may but need not correspond to the Gauss function. On introdu
cing Xh into Eq. (1) and replacing summation by integration, we obtain 

a~ = f::~ f(xh) dXh . (2) 

The distribution f(xh) as well as the variance a~ apply for a measurement without 
errors. In reality, the errors of measurement change this distribution so that every 
column f(xh) dXh is scattered around Xh according to the Gauss distribution: 

In the point y, the contribution of the original relative number of deviations in the 
point Xh will be f(xh) g(y - Xh) dXh' The resulting variance after the measurement 
will be in analogy with Eq. (2) given by 

We set y2 == (y - Xh)2 - x~ + 2XhY and make use of the fact that Eq. (2) gives 
for a distribution g a variance a! and that the integral of the distribution funCtion 
is equal to one, whereas the integral of the odd function z g(z) is equal to zero: 

f:: y2 g(y - xh) dy = f::(y - Xh)2 g(y - xh) dy - x~ f::g(y - xh) dy + 

+ 2Xh f:: y g(y - xh) dy = a! - x~ + 2Xhf::(z + xh) g(z) dz = a! + x~ . 

Thus, we obtain the necessary relation 

. f+oo 
a2 

== _oof(xh)(a! + x~) dxh = a! + a~ . (3) 

Here only the variance a2 of the measured values is known. To determine a~ and a~ 
we shall derive the dependence of a~ on the size of the sampling. We shall assume that 
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the distribution of deviations Xh from homogeneity (further denoted as x) is given 
by the Gauss function f(x). Weshall consider two sets, A and B, of equal number 
of samples of equal size. If the number of samples is sufficiently large, their mean 
values, variance and distribution functions are the same in each set: O"~(A) = O"~(B) 
and 

On pairing one sample from the group A with one randomly chosen from B we obtain 
a set of double-sized samples which we denote as A + B and its variance as O"~(A + B). 
If the deviations from the average for the first and second samples are XA and XB' 
after their pairing, the resulting deviation will be x = 1(XA + XB)' Introducing an 
auxiliary variable A by XA = X - A (and hence XB = x + A) we obtain for the 
distribution of relative frequencies of the deviation x in the set A + B the expression 

f x _ f::fA(X - A) fB(x + A) d.1 

A+B( ) - f+oof+oo 
-00 _oofA(x - A) fB(x + A) d.1 dx 

= (TCO"~(A)]-1/2 exp [-x2jO"~(A)] = [21tfJ~(A + B)]-1/2 exp [-x2j20"~(A + B)]. 

Hence O"~(A + B) = !a~(A), the variance of doubly sized samples is one half as 
large. Analogously, it can be shown that 

a~(kA) = a~(A)jk. (4) 

This equation can be used to determine the unknowns a~ and a~ in Eq. (3) as follows. 
We select from the analyzed material a set of samples of the size (weight) kA. The 
variances a 2(A)and a2(kA) of the measured values fulfil the Eq. (3): 

(5) 

The relation between a~(A) and a~(kA) is given by Eq. (4). The amounts A and kA 
are, of course, chosen so that the analysis can be carried out by the same method. 
Then the error of the determination is the same in both cases: a~(A) = a~(kA). 
Thus the second Eq. (5) takes the form a2(kA) = a~(A)jk + a!(A) and the unknowns 
a~(A) and a!(A) can be expressed as 

a~(A) = k[a2(A) - a2(kA)]j(k - 1), 

a~(A) = [a2(A) - k0"2(kA)]j(1 - k). 
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The remaining unknown a~(kA) is calculated from Eq. (4). Eqs (6) enable to determine 
separately the variances of inhomogeneity, a~, and of the measuring method, a~. 
However, the assumptions inherent in the derivation of Eq.(4) must be observed, e.g. 

that of the Gauss distribution of the deviations in composition, f(xh)' Examining this, 
one must take into account that a solid material (including standards) contains 
relatively homogeneous regions of the size of grains or smaller, th¥ composition 
of which can vary appreciably (precipitates of admixtures in the matrix). If the dimen
sions of the analyzed samples are comparable with those of the mentioned regions 
or are even smaller (microprobe) then the measured values correspond mostly to indi
"Vidual phases in the standard so that the distribution f(xh) is more of a discrete 
character and cannot be even approximately considered as normal (Gauss type) . 

If at least one dimension of the sample is so large as to involve a number of the 
mentioned regions, the distribution f(xl» loses its discrete character and approaches 
the more the normal one the larger is the dimension of the sample. As a rough 
estimate, at least one dimension of the sample should be by an order of magnitude 
larger than the mean distance of precipitates differing by the concentration of the 
element to be determined. A more detailed analysis of the structural problems will 
form the subject of a further work. 

The second assumption is implicitly involved in the derivation ofEq. (4): the sample 
of the set A + B is formed by combining two parts the composition of which is 
independent of each other. This means that the sample of the size kA can be divided 
into k parts the composition of which is independent of one another and the shape 
of which is the same as with samples of the set A. This condition can be easily ful
iilled if all three dimensions of the sample are sufficiently large. If, however, one 
of them is not large enough in the sense of the preceding paragraph (flat samples
quantometer) , one must take into account that the composition of two samples 
taken close to each other in the direction of the small dimension can be more or less 
interrelated since both samples can involve a certain 'number of the same grains. 
In such a case it is necessary before applying Eq. (4) to check independence of the 
neighbouring samples in advance. For example, two subsequent samplings are taken 
in a number of points on a given material. From the results one calculates the variance 
<Ti of the set of first samplings and the variance ai2 of the differences between the 
results of analyses of both samplings taken in the same point (again for all points). 
If ai2 = 0, the neighbouring samplings are entirely interdependent. If ai2 = 2ai, 
they are entirely independent. 

If the condition of independence (with flat samples) is not fulfilled its fulfilment 
,can be achieved by modifying the procedure so that the set kA will consist of samples 
of equal thickness as the set A but of an area larger by the factor of k. This case comes 
into consideration especially with methods which do not require taking samples 
{X-ray fluorescence). 

A method in which the assumptions involved in Eq. (4) are fulfilled is the wet 
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analysis, where the sample weights are several tens of milligrams or more, so that 
it can be assumed that they contain a sufficiently large number of grains. The shape 
of the sample is isometrical. In this case Eq. (4) gives the dependence of the variance 
of inhomogeneity on the size of the sample. Eqs (6) are also fulfilled so that variances 
(T~ and (T~ can be separated. However, in this case it is not the only way since (T~ can 
be determined separately by performing a series of measurements on the same stock 
solution. Nevertheless, the method of separation of (T~ and (T~ based on Eqs (6) 
is more general and principally applicable even with analytical methods which do not 
make use of a homogeneous stock solution . 

EXPERIMENTAL 

To check the derived dependence of the variance of inhomogeneity on the size of the sample 
we used as a material to be analyzed an alloy "silumin" of the composition (in percent) Cu 0'81, 
Si 10'08, Mn 0·6, Fe 1,02, Ni 1·27, Mg 0,94, Ti 0,015, Zn 0·66 and the remainder AI. We determi
ned the content of Cu, Mn and Fe from samplings of three sizes, 0,04, 0·2 and 1·0 g, photometri
cally 15 times for each size. Copper was determined by its reaction with tetraethylthiuramdisul
phide in ethanolic sOlution6 , iron with thiocyanate 7 and manganese with formaldoxim, the Fe(III) 
ions being screened with cyanides. Since our measureme~ts showed this masking to be unsatis
factory the results were checked by titration with periodate6

. The alloy was dissolved in a mixture 
of hydrochloric and nitric acids, evaporated with perchloric acid until white fumes were evolved, 
the undissolved silicon was filtered off, the filter washed and the filtrate made up to 100, 500 
and 1000 ml with the 0'04, 0·2 and 1·0 g samples, respectively, to obtain stock solutions for the 
analyses. 

From the measured values we calculated the averages and variances 0'2(0,04), 0'2(0·2) and 
0'2(1) according to Eq . (1). The variance of inhomogeneity, a~(0·04), was calculated from the 
couple 0'2(0·04) and 0'2(0,2), a~(0'2) from 0'2(0'2) and 0'2(1), and a~(J) from 0'2(1) and 0'2(0·04) 

according to Eqs (6) and (4). For each couple, the variance of the measurement, a~(AB), was 
also calcuiated. Its average value, a~, for a given element is compared with the variance a~ 
of a series of 15 measurements carried out on a single stock solution of silumin. The results are 
shown in Table I. Both used methods of determination of the variance of measurement lead 
to nearly identical results (a~ ~ a~). The dependence of the variance of inhomogeneity, a~. 

TABLE I 

Measured and Calculated Variances (parts per 104
)2 

Variance CLI Fe Mn Variance Cu Fe Mn 

0'2(0'04) 75·45 41-82 119·2 a~{O'04, 0·2) 10·55 18·47 15·65 
0'2(0'2) 23·57 23·15 36·7 a~(0'2, 1) 8·25 7·65 34·67 
0'2(1) 11 ·31 10·75 35·0 a~(0'04, 1) 8·64 9-46 31·48 

a~(0·04) 64·90 23 ·35 103·55 a~ 9·17 11·86 27·27 

a~(0'2) 15·32 15·50 1'70 a~ 9·55 11-80 21·40 

aW) 2·67 1·29 3·52 
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on the size of the sample corresponds to Eq. (4) only with copper. With iron and manganese, 
the measured dependence differs from the theoretical, probably because 15 measurements is 
too little to make a statistics. Nevertheless, assuming that the true form of the dependences, 
which we measured only roughly, is the same for all three elements (except for a constant coef
ficient), we can calculate their average course rel~tive to the absolute values obtained for copper: 

a~(0'04) = 68-48 a~(0'2) = 14·03 a~(l) = 3·01 , 

a~(0'04)/a~(0'2) = 4·88 a~(0' 2) /a~(l) = 4·66 . 

Both last values are very close to k = 5 calculated from Eq. (4). Therefore, we conclude that the 
experimental results are in spite of the limited number of measurements in accord with Eq. (4) 
derived theoretically. 

The dependence of the variance of inhomogeneity on the size of the sample can be, in our opin
ion, made use of in practice since it enables the material intended as an analytical standard 
to be more properly characterized by its manufacturer - mainly for wet analysis. Namely, 
it is sufficient to indicate the variance of inhomogeneity, a~, of the given material for a certain 
size of the sample (e.g. 0·1 g). For another size, the analytical chemist can calculate the value 
of u~ from Eq. (4) and after its subtraction from the total variance of measured values, a 2

, 

obtain the variance of the measuring method, a~. Furthermore, the value of a~(O'l) indicated 
on the standard (the variance of inhomogeneity for a 0·1 g sample) would enable to select both 
a suitable analytical method and a size of the sample corresponding to the desired degree of 
accuracy. 
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